
Digital Object Identifier (DOI) 10.1140/epjc/s2005-02151-y
Eur. Phys. J. C 40, 361–366 (2005) THE EUROPEAN

PHYSICAL JOURNAL C

Heavy quark vacuum polarization:
first two moments of the O(α3

sn
2
f) contribution
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Abstract. The vacuum polarization due to a virtual heavy quark pair and specifically the coefficients of
its Taylor expansion in the external momentum are closely related to moments of the cross section for
quark–antiquark pair production in electron–positron annihilation. Relating measurement and theoretically
calculated Taylor coefficients, an accurate value for charm- and bottom-quark mass can be derived, once
corrections from perturbative QCD are sufficiently well under control. Up to three-loop order these have
been evaluated previously. We now present a subset of four-loop contributions to the lowest two moments,
namely those from diagrams which involve two internal loops from massive and massless fermions coupled to
virtual gluons, hence of order α3

sn
2
f . The calculation demonstrates the applicability of Laporta’s algorithm

to four-loop vacuum diagrams with both massive and massless propagators and should be considered a
first step towards the full evaluation of the order α3

s contribution.

1 Introduction

The correlator of two currents is central for many theo-
retical and phenomenological investigations in quantum
field theory (QFT) (for a detailed review see e.g. [1, 2]).
Important physical observables like the cross section of
electron–positron annihilation into hadrons and the decay
rate of the Z-boson are related to the vector and axial-
vector current correlators. Total decay rates of CP even
or CP odd Higgs bosons can be obtained by considering
the scalar and pseudo-scalar current densities, respectively.
Some of these studies require to calculate the correlator for
arbitrary momentum q2. For many applications, however,
the knowledge of a few derivatives at q2 = 0 is sufficient.

Two-point correlators have been studied in great de-
tail in the framework of perturbative QFT. Indeed, due
to the simple kinematics (only one external momentum)
even multi-loop calculations can be performed analyti-
cally. The results for all physically interesting diagonal
and non-diagonal correlators (vector, axial-vector, scalar
and pseudo-scalar) are available up to order α2

s , taking
into account the full quark mass and momentum depen-
dence [3–5].
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The determination of the heavy quark masses with the
help of QCD sum rules requires the detailed knowledge
of the heavy quark correlators. In fact, as noted in [6],
the precise determination of the charm- and bottom-quark
masses would be further improved by including four-loop
corrections, hence O(α3

s ), to at least the few lowest Taylor
coefficients of the polarization function.

Technically speaking, the moments i.e. certain weighted
integrals of the cross section for electron–positron annihila-
tion into heavy quarks, can be expressed through massive
tadpoles or vacuum diagrams (diagrams without depen-
dence on the external momentum). The evaluation of these
“massive tadpoles” in three-loop approximation has been
pioneered in [7] and automated and applied to a large class
of problems in [8]. However, in spite of huge progress in
calculational techniques during recent years the problem
of the analytical calculation of massive tadpoles at the
four-loop level has not yet been mastered.1

Similar to the three-loop case, the analytical evaluation
of four-loop tadpole integrals is based on the integration-
by-parts (IBP) method [9]. In contrast to the three-loop
case the manual construction of algorithms to reduce ar-
bitrary diagrams to a few master integrals is replaced by

1 The numerical evaluation is certainly possible for individual
contributions; however, one could hardly imagine a direct nu-
merical evaluation of hundreds of thousands of separate terms
which appear after performing necessary expansions and traces
at the four-loop level.
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a mechanical solution of a host of again mechanically gen-
erated IBP equations [10].

Unfortunately, the price for this automatization is an
enormous demand on computational power. A system of
more than ten million linear equations has to be generated
and solved. In the present publication we present only a
partial result. We restrict ourselves to the first two non-
vanishing moments and consider only four-loop diagrams
with the maximal number (two) of closed fermion loops
inside. This corresponds to terms proportional to n2

l , n2
h

and nl nh, where nl denotes the number of light quarks,
considered as massless and nh the number of massive ones.
This leads to a system of about one million equations.

In general, the tadpole diagrams encounteredduring our
calculation contain both massive and massless lines. As is
well-known, the computation of the four-loop β-functions
requires the consideration of four-loop tadpoles only com-
posed of completely massive propagators. Calculations for
this particular case have been performed in [11,12].

The outline of this paper is as follows. In Sect. 2 we
briefly introduce the notation and discuss generalities. In
Sect. 3wediscuss the reduction tomaster integrals, describe
the solution of the linear system of equations and give the
result for the O(α3

sn
2
f ) contribution to the polarization

function for the lowest two moments. Our conclusions and
a brief summary are given in Sect. 4.

2 Notation and generalities

The vacuum polarization tensor Πµν(q2) is defined as

Πµν(q2) = i
∫

dx eiqx〈0|Tjµ(x)jν(0)|0〉, (1)

where qµ is the external momentum and jµ is the electro-
magnetic current. The tensor Πµν(q2) can be expressed
by a scalar function, the vacuum polarization function
Π(q2) through

Πµν(q2) =
(−q2 gµν + qµ qν

)
Π(q2) + qµ qν ΠL(q2). (2)

The longitudinal part ΠL(q2) is equal to zero due to the
Ward identity.
The confirmation of Πµ

µ(q2 = 0) = 0 and ΠL(q2) = 0 will
constitute an important check of our calculation. The con-
stant Π(q2 = 0) relates the QED coupling in the on-shell
scheme and the MS-scheme. The first and higher derivatives
of Π(q2) at q2 = 0 contain important scheme independent
information and will sometimes be called the physical mo-
ments. The imaginary part of the polarization function is
related to the physical observable R(s),

R(s) = 12 π Im Π(q2 = s + i ε). (3)

and properly weighted integrals of R(s) obviously coincide
with the Taylor coefficients:

1
n!

(
d

dq2

)n

Π(q2)
∣∣
q2=0 =

1
12 π2

∫ ∞

0
ds

R(s)
sn+1 . (4)

This justifies to study the Taylor expansion around q2 = 0.
In this case the coefficients are given by massive tadpole in-
tegrals,

Π(q2) =
Nc

16 π2

∑
n≥0

Cn zn, (5)

with the dimensionless variable z = q2/(4 m2), where m is
the mass of the heavy quark and Nc denotes the number
of colors. It is convenient to define the expansion of the
coefficients Cn of the polarization function in the strong
coupling constant αs as

Cn = C(0)
n + as C(1)

n + a2
s C(2)

n + a3
s C(3)

n + . . . (6)

with as = αs
π . Within this work we consider the n2

f con-

tribution of C
(3)
n and define C

(3)
n

∣∣
n2

f

= T 2 CF Ĉ
(3)
n , where

T denotes the normalization factor of the fundamental-
representation generators ta defined by Tr[ta tb] = T δab

and CF is the Casimir operator in the fundamental repre-
sentation.

3 Calculations and results

Reduction to master integrals

In the first step the reducible scalar products in the numer-
ator of the integrands have been removed in the sense that
trivial tensor reduction has been performed. All reducible
scalar products have been expressed in terms of their asso-
ciated denominators. Through this the remaining integrals
can be mapped upon a set of 12 independent topologies.

Through the expansion in the external momentum q
the derivatives acting on the polarization function generate
additional powers of the denominators of the integrands.
The deeper the expansion is, the higher powers are ob-
tained. Let Md denote the sum of powers of propagators
Di minus the number of propagators of the generic integral.
Let Mp denote the total sum of powers of the irreducible
scalar products in the numerator of the integrand. Then
one obtains integrands with Md up to 8 and Mp up to
3, for an expansion of the n2

f contribution up to the first
physical moment.

For the reduction of these integrals to a set of a few
master integrals the standard method of IBP has been
used. The reduction was implemented following the ideas
described in [10, 13, 14]. In order to reduce the polariza-
tion function to master integrals for an expansion up to the
first physical moment a system of around 880 000 equations
has to be generated and solved. For a deeper expansion of
the polarization function one obtains higher values for Md
and Mp. This requires a huger system of IBP-identities in
order to obtain a reduction to master integrals. A lexico-
graphical ordering has been introduced assigning to each
integral a weight describing its “complexity”. Integrals with
increasing powers of the denominator and increasing num-
ber of irreducible scalar products are denoted as increas-
ingly complicated. The linear system of equations has been
solved with a program based on FORM3 [15] which uses
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FERMAT [16] for simplifying the rational functions in the
space-timedimension d, which arise in this procedure.Com-
plicated integrals are systematically expressed in terms of
simpler ones and then substituted into the other equations.
Some contributions have been checked independently with
the program SOLVE [17] from which also some experience
concerning the procedure of ordering the integrals accord-
ing to their complexity has been gained. Masking of large
integral coefficients is used, a strategy also adopted in the
program AIR [18].

Exploiting the symmetries of the diagrams by reshuf-
fling the powers of the propagators of a given topology in
a unique way strongly reduces the size of the initial input
and, similarly, in the second step the number of equations
which need to be solved.

The solution of the system leads to a set of a around
130 000 independent equations. With the help of these
equations the first two Taylor coefficients of the polar-
ization function can be expressed in terms of six master
integrals M1–M6, with denominator powers one and no
irreducible scalar products (Md = 0, Mp = 0), which are
shown in Fig. 1.

R1 R2 R3

R4 R5 R6

M1 M2 M3

M4 M5 M6

Fig. 1. List of independent topologies belonging to the n2
f

contribution. The topologies R1–R6 are reducible, whereas the
topologies M1–M6 are master integrals. The wavy and solid
lines depict massless and massive propagators respectively

Calculation of the master integrals

The master integrals which belong to the diagrams M1−M6
are defined in d = 4 − 2 ε space-time dimensions through

M1 =
µ16−4 d

N4

∫
dd�1
(2 π)d

dd�2
(2 π)d

dd�3
(2 π)d

dd�4
(2 π)d

× 1
D1 D2 D4 D7 D8 D10

, (7)

M2 =
µ16−4 d

N4

∫
dd�1
(2 π)d

dd�2
(2 π)d

dd�3
(2 π)d

dd�4
(2 π)d

× 1
D1 D2 D3 D4 D9 D10

, (8)

M3 =
µ16−4 d

N4

∫
dd�1
(2 π)d

dd�2
(2 π)d

dd�3
(2 π)d

dd�4
(2 π)d

× 1
D4 D5 D6 D7 D8 D10

, (9)

M4 =
µ16−4 d

N4

∫
dd�1
(2 π)d

dd�2
(2 π)d

dd�3
(2 π)d

dd�4
(2 π)d

× 1
D1 D2 D3 D4 D9

, (10)

M5 =
µ16−4 d

N4

∫
dd�1
(2 π)d

dd�2
(2 π)d

dd�3
(2 π)d

dd�4
(2 π)d

× 1
D2 D4 D5 D7 D9

, (11)

M6 =
µ16−4 d

N4

∫
dd�1
(2 π)d

dd�2
(2 π)d

dd�3
(2 π)d

dd�4
(2 π)d

× 1
D1 D2 D3 D4

(12)

with

D1 = �21 + m2 − i ε, D5 = �21 − i ε,

D8 = (�1 + �2 + �3)2 − i ε,

D2 = �22 + m2 − i ε, D6 = �22 − i ε,

D9 = (�1 + �2 + �3)2 + m2 − i ε,

D3 = �23 + m2 − i ε, D7 = �23 − i ε,

D10 = (�1 + �2 + �4)2 + m2 − i ε,

D4 = �24 + m2 − i ε (13)

and the normalization factor

N = ε µ4−d

∫
dd�1
(2 π)d

1
D2

1
=

1
16 π2 Γ (1 + ε)

(
m2

4 πµ2

)−ε

.

(14)
The factor µ denotes the renormalization scale.

Before calculating the master integral M1 we consider
at first the following combination of integrals with dots,



364 K.G. Chetyrkin et al.: Heavy quark vacuum polarization

where a dot on a line denotes an additional power of the
associated denominator

m2 +
m2

ε
= N10 + O(ε). (15)

The three-loop topology in the left hand side of (15) as
well as all following three-loop diagrams are normalized by
N3 (of (14)). The combination in (15) is finite and can be
integrated numerically, with the result N10 = 5.3111546 . . .

The relation between the dotted topologies in (15) and
master integrals can be obtained via IBP. One finds the
following relations:

=
(d − 3)3 (2 d − 7)

16 (d − 4) m6

+
(d − 3) (d − 2) (3 d − 8) (7 d2 − 48 d + 82)

128 (d − 4) (2 d − 7) m8 ,

(16)

= − 3 (d − 3) (3 d − 10) (3 d − 8)
256 (d − 4) m6

− (d − 2)2 (11 d − 38)
128 (d − 4) m8 . (17)

The three-loop integrals in the right hand side of (17)
and the factorizable four-loop amplitude in the right hand
side of (16) can be calculated with MATAD [8] or taken
from [19]. Inserting (16) and (17) into (15) leads to2

M1 = m4
(

2
3 ε4 +

4
ε3 +

38
3 ε2 +

4
3 ε

(11 + 4 ζ3)

− 2
15

(
885 + 2 π4 − 660 ζ3

)

− 4 ε

15
(4335 − 1440 a4 − 60 log4(2) + 120 N10

+60 log2(2) π2 + 23 π4 − 2690 ζ3 − 360 ζ5)

+O(ε2)
)

, (18)

with

ζn =
∞∑

k=1

1
kn

and a4 =
∞∑

k=1

1
2kk4 . (19)

2 We have been informed that the same result has been
independently obtained in [20].

The same procedure has been applied for calculating the
master integral M2. The topology M2 with three symmet-
rical distributed dots is finite

m2 = N20 + O(ε) (20)

and can be integrated numerically. The calculation yields
N20 = 5.40925606 . . . The master integral M2 can be cal-
culated using the IBP identity

= − (d − 4) (d − 3)3 (2 d − 7)
6 (3 d − 13) (3 d − 11) m6

− (d − 3) (d − 2) (3 d − 8) (13 d2 − 99 d + 182)
512 (3 d − 13) (3 d − 11) m8

+
(d − 2)4 (d − 1)

256 (3 d − 13) (3 d − 11) m10 , (21)

inserting (21) into (20) and solving with respect to M2
results in

M2 = m4
(

3
2 ε4 +

19
2 ε3 +

67
2 ε2

+
1
2 ε

(127 − 6 N20 + 21 ζ3) + O(ε0)
)

.

This result is in agreement with (4) in [21].
The calculation of the master integral M3 is easy,

M3 = m4
(

1
6 ε4 +

5
6 ε3 +

3
2 ε2 − 1

6 ε
(39 − 38 ζ3)

− 1
60

(4710 + 23 π4 − 1900 ζ3) (22)

− ε

12
(
5934 + 23 π4 − 684 ζ3 − 2580 ζ5

)
+ O(ε2)

)
.

For completeness we also give the results for the factorized
master integrals

M4 = m6
(

− 2
ε4 − 29

3 ε3 − 163
6 ε2 − 601

12 ε

− 1
24

(635 + 896 ζ3)

+
ε

720
(204705 − 184320 a4 − 7680 log4(2)

+7680 log2(2) π2 + 2176 π4 − 228480 ζ3) + O(ε2)
)

,

M5 = m6
(

− 1
3 ε4 − 3

2 ε3 − 43
12 ε2 − 1

24 ε
(81 + 64 ζ3)

+
1

240
(3985 + 32 π4 − 2880 ζ3)

+
ε

480
(
60435 + 288 π4 − 13760 ζ3 − 23040 ζ5

)
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+O(ε2)
)

,

M6 = m8
(

1
ε4 +

4
ε3 +

10
ε2 +

20
ε

+ 35 + 56 ε + O(ε2)
)

.

Result for the O(α3
sn2

f) contribution

Inserting the above master integrals into the reduced n2
f

contribution and performing renormalization of the strong
coupling constant αs, the external current and the mass
m = m(µ2) in the MS-scheme, leads to the following result
for the first two moments of the four-loop O(α3

sn
2
f ) contri-

bution of the heavy quark vacuum polarization function:

Ĉ
(3)
0 = nl nh

(
7043
11664

− 127
108

ζ3 +
1
6

N10

+
(

37
324

− 7
24

ζ3

)
lµ +

2
27

l2µ − 2
27

l3µ

)

+n2
h

(
610843
816480

+
1439
540

ζ3 − 157
210

N20

+
(

113
324

− 7
24

ζ3

)
lµ +

1
27

l2µ − 1
27

l3µ

)
(23)

+n2
l

(
17897
23328

− 31
54

ζ3 − 19
81

lµ +
1
27

l2µ − 1
27

l3µ

)

and

Ĉ
(3)
1 = nl nh

(
262877
262440

− 38909
19440

ζ3 +
29
81

N10

+
(

3779
21870

− 203
324

ζ3

)
lµ +

472
3645

l2µ − 16
135

l3µ

)

+n2
h

(
163868
98415

+
13657
2430

ζ3 − 5648
3645

N20

+
(

14483
21870

− 203
324

ζ3

)
lµ +

236
3645

l2µ − 8
135

l3µ

)

+n2
l

(
42173
32805

− 112
135

ζ3 − 1784
3645

lµ

+
236
3645

l2µ − 8
135

l3µ

)
, (24)

with lµ = log
(

µ2

m2

)
.

The n2
l contribution has been checked independently by

taking into account the corresponding two-loop case, in
which the gluon propagator has been replaced by a gluon
propagator containing a renormalon chain with two mass-
less fermion one-loop insertions. The computation has been
performed in a general ξ-gauge and it has been checked that
the dependence on the gauge parameter vanishes. Further-
more it has been checked that both coefficient functions

C0 and C1 meet the standard renormalization group equa-
tion. Numerically one finds for the coefficient C0 and C1
at µ = m

C0 = as 1.4444 + a2
s (1.5863 + 0.1387 nh + 0.3714 nl)

+a3
s

(
0.0252 nh nl + 0.0257 n2

l − 0.0309 n2
h

)
, (25)

C1 = 1.0667 + as 2.5547

+a2
s (0.2461 + 0.2637 nh + 0.6623 nl)

+a3
s

(
0.1658 nh nl + 0.0961 n2

l + 0.0130 n2
h

)
. (26)

4 Summary and conclusion

Using the IBP method and Laporta’s algorithm, we have
evaluated a gauge invariant subset of the four-loop tadpole
amplitudes contributing to derivatives of the vacuum po-
larization at q2 = 0. All loop integrals have been mapped
on a minimal set of independent topologies. Then an elab-
orate automated procedure has been developed and ap-
plied, which identifies equivalent amplitudes, factorizable
contributions, discards massless tadpoles, and performs
symmetrization. Solving a system of nearly one million
linear equations, all amplitudes can be expressed through
six master integrals. These have been evaluated analyti-
cally or numerically to high precision. The present work
can be seen as a first step towards the evaluation of the
full set of four-loop amplitude contributions to the vacuum
polarization function.
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